Multiple-instance discriminant analysis
نویسندگان
چکیده
Multiple-instance discriminant analysis (MIDA) is proposed to cope with the feature extraction problem in multiple-instance learning. Similar to MidLABS, MIDA is also derived from linear discriminant analysis (LDA), and both algorithms can be treated as multiple-instance extensions of LDA. Different from MidLABS which learns from the bag level, MIDA is designed from the instance level. MIDA consists of two versions, i.e., binary-class MIDA (B-MIDA) and multi-class MIDA (M-MIDA), which are utilized to cope with binary-class (standard) and multi-class multiple-instance learning tasks, respectively. The block coordinate ascent approach, by which we seek positive prototypes (the most positive instance in a positive bag is termed as the positive prototype of this bag) and projection vectors alternatively and iteratively, is proposed to optimize B-MIDA and M-MIDA to obtain lower dimensional transformation subspaces. Extensive experiments empirically demonstrate the effectiveness of B-MIDA and M-MIDA in extracting discriminative components and weakening class-label ambiguities for instances in
منابع مشابه
Multiple Instance Metric Learning from Automatically Labeled Bags of Faces
Metric learning aims at finding a distance that approximates a task-specific notion of semantic similarity. Typically, a Mahalanobis distance is learned from pairs of data labeled as being semantically similar or not. In this paper, we learn such metrics in a weakly supervised setting where “bags” of instances are labeled with “bags” of labels. We formulate the problem as a multiple instance le...
متن کاملRecovering Pose and 3D Deformable Shape from Multi-instance Image Ensembles
In recent years, there has been a growing interest on tackling the Non-Rigid Structure from Motion problem (NRSfM), where the shape of a deformable object and the pose of a moving camera are simultaneously estimated from a monocular video sequence. Existing solutions are limited to single objects and continuous, smoothly changing sequences. In this paper we extend NRSfM to a multi-instance doma...
متن کاملRobust Parametric Modeling Approach Based on Domain Knowledge for Computer Aided Detection of Vertebrae Column Metastases in MRI
This study evaluates a robust parametric modeling approach for computer-aided detection (CAD) of vertebrae column metastases in whole-body MRI. Our method involves constructing a model based on geometric primitives from purely anatomical knowledge of organ shapes and rough variability limits. The basic intensity range of primary 'simple' objects in our models is derived from expert knowledge of...
متن کاملInvestigating the Role of the Components of the Knowledge-Based Economy in Iran Present Situation and the Vision Plan Countries Using Multiple- Group Discriminant Analysis and K-Mean Differentiation Analysis
Objective: One of the long-term goals and strategies of the country for development in the 20-year vision plan is the development of the knowledge-based economy, so that with pursuing this strategy, Iran could become a knowledge-based economy by 1404. The purpose of this research is to explain the economic status of Iran among regional competitors based on the components of knowledge-based econ...
متن کاملMultimodal Linear Discriminant Analysis via Structural Sparsity
Linear discriminant analysis (LDA) is a widely used supervised dimensionality reduction technique. Even though the LDA method has many real-world applications, it has some limitations such as the single-modal problem that each class follows a normal distribution. To solve this problem, we propose a method called multimodal linear discriminant analysis (MLDA). By generalizing the between-class a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014